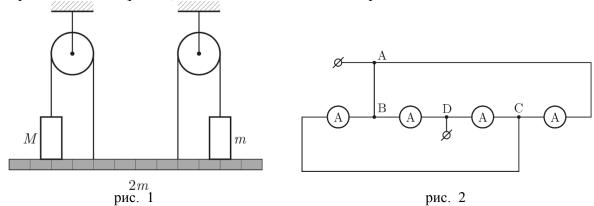
9 класс

Задача 1. Постоянная планка

При каких значениях массы M возможно равновесие грузов на массивной однородной планке (рис. 1)? Нити и блоки невесомы. Трения нет. Масса m известна.



Задача 2. Карлсон уже не тот

Однажды у Карлсона заглох моторчик, и он стал падать вертикально вниз с постоянной скоростью $v_1 = 6$ м/с. После ремонта мотор стал развивать постоянную силу тяги. Из-за этого, при вертикальном подъеме Карлсон выходил на скорость $v_2 = 3$ м/с. С какой постоянной скоростью он двигался в горизонтальном полете? Считать силу сопротивления воздуха пропорциональной квадрату скорости. Карлсон, будучи в меру упитанным, одинаково обтекаем во всех направлениях.

Задача 3. Амперметры

Из четырёх одинаковых амперметров собрали цепь (

рис. 2), которую подключили к источнику с небольшим напряжением. Определите силу тока, текущего через перемычку AB (сопротивление перемычки и соединительных проводов много меньше сопротивления амперметра), если сумма показаний всех амперметров $I_0 = 49$ мA.

Задача 4. Полёт

Скорость камня, брошенного с горизонтальной плоскости под углом к горизонту, через время $\tau=0,5$ с после броска составляла $\alpha=80\%$ от начальной скорости, а ещё через τ соответственно $\beta=70\%$.

Найдите полное время полёта камня.

На каком расстоянии от места броска упал камень?

Ускорение свободного падения $g = 9.8 \text{ m/c}^2$, сопротивлением воздуха пренебречь.

Задача 5. Положение Солнца

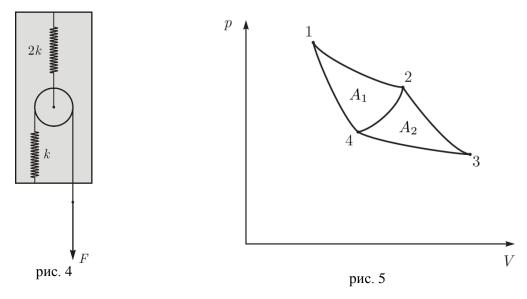
На листе с приведённой фотографией (рис. 3) восстановите положение Солнца и верхнего края забора. Все построения проводите непосредственно на выданном листе с фотографией и по окончанию тура сдайте его вместе с работой. В своей тетради приведите необходимые пояснения.

рис. 3

10 класс

Задача 1. Ящик с пружинами

Внутри черного ящика находятся две легкие пружины с жесткостями k и 2k, связанные легкой нерастяжимой нитью, и легкий подвижный блок (рис. 4). В начальном состоянии, внешняя сила F=6 H, приложенная к свободному концу нити, обеспечивает деформацию нижней пружины x=1 см. Какую минимальную работу A должна совершить внешняя сила, чтобы сместить вниз свободный конец нити ещё на x?



Задача 2. Два в одном

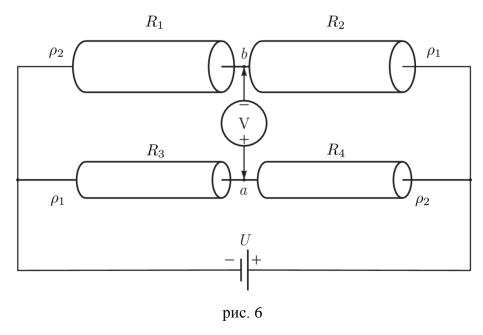
На pV-диаграмме (рис. 5) изображены три замкнутых процесса, происходящих с идеальным газом: 1-2-4-1, 2-3-4-2 и 1-2-3-4-1. На участках 1-2 и 3-4 температура газа постоянна, а на участках 2-3 и 4-1 газ теплоизолирован. Известно, что в процессе 1-2-4-1 совершается работа $A_1 = 5$ Дж, а в процессе 2-3-4-2 — $A_2 = 4$ Дж. Найдите коэффициент полезного действия процесса 1-2-3-4-1, если коэффициенты полезного действия процессов 1-2-4-1 и 2-3-4-2 равны.

Задача 3. Приключения пробирки

Пробирка длиной l=35 см, содержащая воздух при температуре $T_0=300$ K, полностью погружена в ртуть плотностью $\rho=13\,600\,$ кг/м 3 так, что дно пробирки касается поверхности жидкости и пробирка вертикальна. При этом жидкостью заполнена часть пробирки длиной $h=10\,$ см. Пробирку поднимают вверх до тех пор, пока её нижний край не достигнет поверхности ртути (пробирку из ртути не вынимают). Считайте, что в процессе подъема температура воздуха в пробирке не менялась. Затем температуру воздуха в пробирке изменили, и ртуть снова заполнила часть пробирки длиной h. Найти конечную температуру воздуха в пробирке T. Атмосферное давление $p_0=10^5\,$ Па.

Задача 4. Сложный сплав

Из сплава с линейно изменяющимся от расстояния удельным сопротивлением изготовлены два тонких проводника одинаковой длины с вдвое отличающейся площадью сечения. Удельное сопротивление с одного конца каждого из проводников равно ρ_1 , а с другого ρ_2 . Проводники соединили параллельно и подключили к идеальному источнику с напряжением U, а к их серединам (точки a и b) подключили идеальный вольтметр (рис. 6). Найдите показание вольтметра V.



Задача 5. Две шайбы

На гладкой поверхности находятся две одинаковых гладких шайбы радиуса R. Одной из шайб сообщают скорость υ_0 вдоль оси x (рис. 7). Спустя некоторое время произошёл абсолютно упругий удар. При каком значении прицельного параметра d проекция скорости второй шайбы на ось y максимальна?

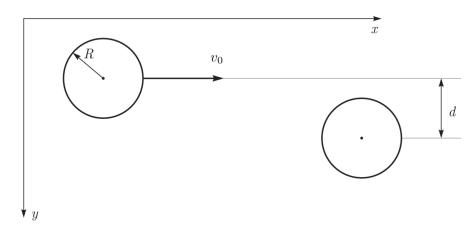


рис. 7

11 класс

Задача 1. Математический маятник

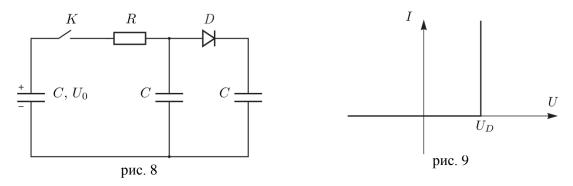
Маленький шарик колеблется на лёгкой нерастяжимой нити в поле тяжести g с большой угловой амплитудой α . Найдите ускорение, с которым движется шарик в момент времени, когда натяжение нити в 4 раза превышает минимальное значение. Найдите наименьшую амплитуду колебаний α_{\min} при которой возможна такая ситуация.

Задача 2. Перезарядка конденсаторов

Три одинаковых конденсатора ёмкостью C, резистор сопротивлением R и диод включены в схему, представленную на рис. 8. Вольтамперная характеристика диода представлена на рис. 9. Первоначально левый (на рисунке) конденсатор заряжен до напряжения U_0 , при этом заряд верхней пластины — положительный. Два других конденсатора не заряжены, ключ разомкнут. Затем ключ замыкают.

Определите:

- 1. напряжение на конденсаторах через большой промежуток времени после замыкания ключа;
- 2. количество теплоты, которое выделится в схеме к этому моменту времени;
- 3. количество теплоты, выделившейся к этому моменту на диоде;
- 4. количество теплоты, выделившейся к этому моменту на резисторе.



Задача 3. Ускорение доски

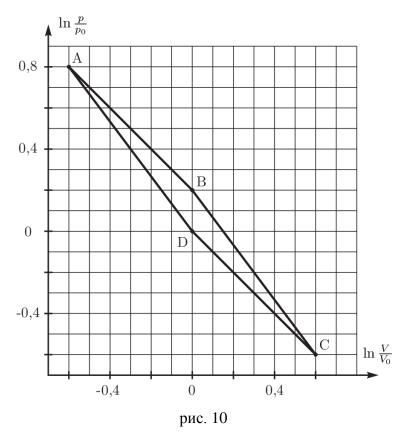
На гладкой горизонтальной поверхности лежит доска длиной L и массой M. На краю доски покоится небольшой брусок. На брусок начинает действовать постоянная горизонтальная сила, так что он движется вдоль доски с ускорением, которое больше ускорения доски. Найдите ускорение с которым двигалась доска, если за время движения по ней бруска выделилось количество теплоты Q.

Задача 4. Циклический процесс

На рис. 10 представлен график циклического процесса, совершённого над идеальным многоатомным газом. Найдите КПД этого процесса.

$$pV^{\frac{C_p-C}{C_V-C}} = \text{const},$$

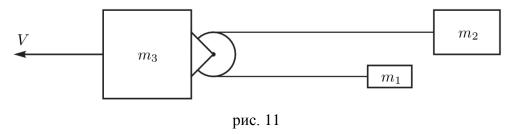
где C_p — теплоёмкость газа при постоянном давлении, а C_V — теплоёмкость газа при постоянном объёме.



Задача 5. Провисла-натянулась

На гладкой горизонтальной плоскости находятся три бруска, массы которых равны m_1 , m_2 и m_3 . На рис. 11 приведён вид сверху. Упругая лёгкая резинка связывает бруски 1 и 2 и проходит через блок, прикреплённый к бруску 3. Трения в системе нет. Исходно бруски неподвижны, а резинка чуть провисает. Бруску 3 ударом (мгновенно) сообщают скорость V.

- 1. Найдите скорости брусков в момент, когда растяжение резинки наибольшее.
- 2. Какими будут скорости брусков, когда резинка снова провиснет?
- 3. В случае, когда $V=1\,\mathrm{m/c},\ m_1=1\,\mathrm{kr},\ m_2=2\,\mathrm{kr},\ m_3=3\,\mathrm{kr}$ найдите скорость v_3 третьего бруска, когда растяжение резинки наибольшее.



Возможные решения 9 класс

Задача 1. Постоянная планка

Равновесие возможно, если существуют отличные от нуля силы реакции грузов и планки и силы натяжения нитей. Для нахождения сил натяжения рассмотрим только внешние силы, действующие на систему грузы+блоки+планка. Правила моментов относительно точек O_1 и O_2 , лежащих на линиях действия сил натяжения верхних нитей (рис. 12), имеют вид:

$$Mgx + 2T_2 6x = 2mg 3x + mg 7x$$
 (относительно полюса O_1), $mgx + 2T_1 6x = 2mg 3x + Mg 7x$ (относительно полюса O_2).

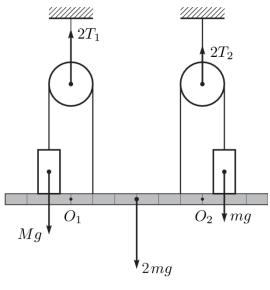


рис. 12

Откуда
$$T_1 = \frac{5m + 7M}{12} g$$
, $T_2 = \frac{13m - M}{12} g$.

Видно, что левая нить не провисает при любых массах M, а правая натянута при M < 13m. Запишем условия равновесия для каждого из грузов в отдельности:

$$Mg = T_1 + N_1,$$

$$mg = T_2 + N_2.$$

Откуда с учетом выражений для сил натяжения силы реакции равны: $N_1=5(M-m)g/12$ и $N_2=(M-m)g/12$. Положительные значения сил реакции будут только при M>m .

Окончательно, равновесие системы возможно для m < M < 13m.

Задача 2. Карлсон уже не тот

По условию сила сопротивления пропорциональна квадрату скорости, то есть задаётся формулой $k\upsilon^2$. При свободном падении сила тяжести равна силе сопротивления:

$$mg = kv_1^2$$
, откуда $k = \frac{mg}{v_1^2}$.

Обозначим силу тяги моторчика после ремонта $F_{\rm T}$. При вертикальном взлёте сила тяги равна сумме силы тяжести и силы сопротивления:

$$F_{\mathrm{T}} = mg + k\upsilon_{2}^{2} = mg\left(1 + \left(\frac{\upsilon_{2}}{\upsilon_{1}}\right)^{2}\right).$$

При горизонтальном полёте сила тяги компенсирует силу тяжести, направленную вертикально и силу сопротивления, направленную горизонтально:

$$F_{\rm T}^2 = mg^2 + kv_3^2 = mg^2 \left(1 + \left(\frac{v_3}{v_1}\right)^4\right).$$

Из приведённой выше системы уравнений найдём υ_3 :

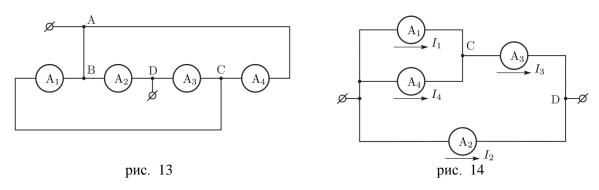
$$v_3 = \sqrt[4]{v_2^2 + 2v_1^2} \approx 5.2 \text{ m/c}.$$

Задача 3. Амперметры

Пронумеруем амперметры слева направо (

рис. 13) и изобразим эквивалентную схему (рис. 14). Поскольку все амперметры одинаковые, одинаковы и их внутренние сопротивления. Значит, $I_1 = I_4 = I$, $I_3 = I_1 + I_4 = 2I$. Обозначим внутреннее сопротивление амперметра r, тогда напряжение источника равно

$$U = I_1 r + I_3 r = 3Ir = I_2 r$$
, откуда $I_2 = 3I$.



По условию $I_0=I_1+I_2+I_3+I_4=7I$, откуда $I=I_0/7=7\,$ мА. Искомая сила тока через перемычку АВ $I_{AB}=I_1+I_2=4I=28\,$ мА.

Задача 4.

Пусть υ_{x0} — проекция скорости тела в начальный момент на горизонтальную ось, а υ_{y0} — на вертикальную. Если пренебречь сопротивлением воздуха, то проекция скорости тела на горизонтальную ось сохраняется, а проекция на вертикальную ось будет изменяться по закону

$$\upsilon_{v}(t) = \upsilon_{v0} - gt$$
.

Величина скорости тела в любой момент может быть найдена по формуле

$$v(t) = \sqrt{v_x^2 + v_y^2} = \sqrt{v_{x0}^2 + v_{y0} - gt^2}.$$

По условию

$$\upsilon(\tau) = \sqrt{\upsilon_{x0}^2 + \upsilon_{y0} - g\tau^2} = \alpha \sqrt{\upsilon_{x0}^2 + \upsilon_{y0}^2},$$

$$\upsilon(2\tau) = \sqrt{\upsilon_{x0}^2 + \upsilon_{y0} - 2g\tau^2} = \beta \sqrt{\upsilon_{x0}^2 + \upsilon_{y0}^2}.$$
(1)

Решая эту систему, найдём $\upsilon_{x0}=10,53~\mathrm{m/c}$, $\upsilon_{y0}=10,85~\mathrm{m/c}$. Время полёта $t_{_{\Pi}}=2\upsilon_{y0}/g=2,21~\mathrm{c}$, расстояние от места броска до места падения $l=\upsilon_{x0}t_{_{\Pi}}=23,3~\mathrm{m}$.

Задача 5.

Световые лучи распространяются прямолинейно. Слева на фотографии запечатлены несколько людей вместе с отбрасываемыми ими тенями. Полностью видна тень девушки в чёрном плаще. Через вершины её головы и тени проведём прямую 1, на которой будет лежать изображение Солнца (рис. 15). Тоже справедливо, например, для ребёнка в коляске и его тени. Если на фотографии тень от какого-нибудь прута забора и прут лежат на одной прямой, то на этой же прямой находится изображение Солнца. Найдём на фотографии наиболее подходящий прут и проведём через него линию 2. На пересечении линий 1 и 2 лежит изображение Солнца. Обозначим эту точку Ѕ. Зная положение Солнца, можно восстановить положение верхнего края забора. Проведём прямую через верхушку тени, отбрасываемой одним и столбов, и точку S. Проведём также прямую, являющуюся продолжением этого столба. На пересечении двух этих прямых лежит вершина столба (точка A). Аналогичным образом можно найти вершину другого столба (точка B) и через две этих точки провести прямую, соответствующую верхнему краю столба. Эта прямая должна также проходить через точку C — пересечение прямых, являющихся продолжениями тени верхнего края забора и нижнего края забора. Эта точка также может быть использована для восстановления верхнего края забора.

рис. 15

10 класс

Задача 1. Ящик с пружинами

Из-за блока сила, растягивающая верхнюю пружину вдвое больше. Тогда, по закону Гука, деформации верхней и нижней пружин одинаковы: F = kx, 2F = 2kx. Пусть при смещении свободного конца на x вниз растяжение верхней пружины увеличивается на y. При этом блок опустится вниз на y. Как было показано, растяжение нижней пружины также равно y. Поскольку нить нерастяжима x = 3y.

Внешняя сила сначала равна F = kx, в конце $F_1 = k(x+y) = (4/3)kx = (4/3)F$ и линейно зависит от x. Работу этой силы найдём как площадь под графиком F(y):

$$A = \frac{F + F_1}{2} x = \frac{7}{6} Fx.$$

Задача 2. Два в одном

В процессе 1-2-4 на участке 1-2 к газу подводят тепло Q_1 , а на участке 2-4 газ отдаёт тепло Q. В процессе 2-3-4 на участке 4-2 к газу подводят тепло Q, а на участке 3-4 газ отдаёт тепло Q_2 . В процессе 1-2-3-4 на участке 1-2 к газу подводят тепло Q_1 , а на участке 3-4 газ отдаёт тепло Q_2 . В процессах 1-2-4 и 2-3-4 проходится один и тот же участок 2-4, но в разных направлениях, поэтому в одном цикле на этом участке совершается положительная, а в другом такая же по величине, но отрицательная работа. Отсюда следует, что $A = A_1 + A_2$.

По определению коэффициента полезного действия

$$\eta_1 = \frac{A_1}{Q_1}, \quad \eta_2 = \frac{A_2}{Q}.$$

Поскольку $\eta_1=\eta_2$, то $Q=A_2/A_1$ Q_1 . По закону сохранения энергии для цикла 1-2-4 $A_1=Q_1-Q$. Откуда

$$Q_1 = \frac{A_1^2}{A_1 - A_2}.$$

Зная работу A и тепло Q_1 , можно найти искомый КПД

$$\eta = \frac{A}{Q_1} = \frac{A_1^2 - A_2^2}{A_1^2} = 36\%.$$

Задача 3. Приключения пробирки

Проверим, не выходит ли часть воздуха из пробирки. В конечном состоянии объем воздуха не может превышать объема пробирки (иначе часть воздуха выйдет), а давление не может превышать атмосферного (давление равно атмосферному, если она будет заполнена в конечном положении целиком и меньше атмосферного, если в ней есть жидкость). Таким образом, по закону Бойля-Мариотта получаем условие:

$$p_{\text{нач}}V_{\text{нач}} = p_{\text{кон}}V_{\text{кон}} \leq p_0V_{\text{пробирки}} \text{ , т.е. } p_{\text{нач}}V_{\text{нач}} \leq p_0V_{\text{пробирки}} \text{ откуда } (p_0 + \rho \, g(l-h))(l-h) - p_0l \leq 0$$

Это условие не выполняется, поэтому мы приходим к выводу, что за время подъёма часть воздуха из пробирки выходит, и к его окончанию пробирка будет целиком заполнена воздухом при атмосферном давлении. Запишем в этом случае уравнение состояния для воздуха:

$$p_0 V_{\text{пробирки}} = \nu R T_0$$
.

После изменения температуры уравнение состояния примет вид:

$$p_0 - \rho gh \ V_{\text{кон}} = \nu RT$$
, где $V_{\text{кон}} = \frac{l-h}{l} V_{\text{пробирки}}$.

Сокращая в этих уравнениях количество воздуха ν , находим искомую температуру:

$$T = \frac{(p_0 - \rho gh)(l - h)}{p_0 l} T_0 = 186 \text{ K}.$$

Если не учесть выход воздуха, то получается неправильный «ответ» $T = \frac{p_0 - \rho \, gh}{p_0 + \rho \, g(l-h)} T_0 = 70 \, \mathrm{K}.$

Задача 4. Сложный сплав

Сопротивление проводника длиной L и площадью поперечного сечения S, удельное сопротивление которого линейно меняется с расстоянием от ρ_l до ρ_r можно найти по формуле:

$$R = \frac{\rho_l + \rho_r}{2} \frac{l}{S}.$$
 (2)

Для нахождения показания вольтметра мысленно разобьём каждый проводник посередине на два последовательно соединённых (рис. 16). Применим для них формулу (2):

$$\frac{R_1}{R_2} = \frac{\rho_2 + (\rho_1 + \rho_2)/2}{\rho_1 + (\rho_1 + \rho_2)/2} = \frac{\rho_1 + 3\rho_2}{3\rho_1 + \rho_2}.$$

Поскольку при последовательном соединении проводников напряжение на них падает пропорционально сопротивлению, падение напряжение на резисторе R_2 :

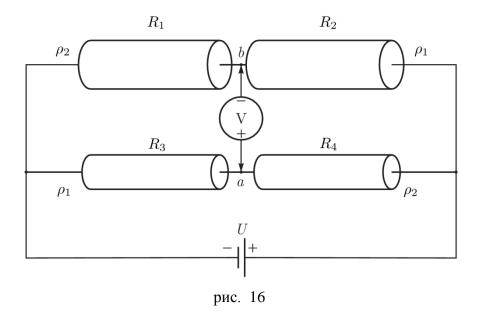
$$V_2 = U \frac{R_2}{R_1 + R_2} = U \frac{3\rho_1 + \rho_2}{4 \rho_1 + \rho_2},$$

аналогично

$$V_4 = U \frac{R_4}{R_3 + R_4} = U \frac{\rho_1 + 3\rho_2}{4 \rho_1 + \rho_2}.$$

Падение напряжения на резисторе R_2 равно сумме падений напряжений на резисторе R_4 и вольтметре:

$$V_2 = V_4 + V$$
, откуда $V = V_2 - V_4 = \frac{U}{2} \frac{\rho_1 - \rho_2}{\rho_1 + \rho_2}$.



Задача 5.

Поскольку шайбы гладкие, при столкновении действующие между ними силы будут направленны вдоль прямой, соединяющей центры шайб (рис. 17). Обозначим скорость второй шайбы после столкновения за $\vec{\upsilon}$. Поскольку шайбы одинаковы, их массы равны. По закону сохранения импульса скорость первой шайбы после удара будет $\vec{\upsilon}_0 - \vec{\upsilon}$. Поскольку удар абсолютно упругий, кинетическая энергия сохраняется:

$$\upsilon_0^2 = (\vec{\upsilon}_0 - \vec{\upsilon})^2 + \upsilon^2 = \upsilon_0^2 - 2\upsilon_0\upsilon\cos\alpha + 2\upsilon^2$$
, откуда $\upsilon = \upsilon_0\cos\alpha$.

Проекция скорости второй шайбы на ось у есть $\upsilon \sin \alpha = \upsilon_0 \cos \alpha \sin \alpha = \frac{1}{2} \upsilon_0 \sin 2\alpha$. Проекция максимальна при $\alpha = 45^\circ$, в этом случае $d = \sqrt{2}r$.

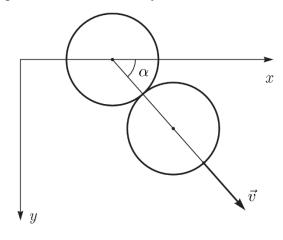


рис. 17

11 класс

Задача 1.

Обозначим массу шарика m, а длину нити l и рассмотрим момент, когда нить составляет угол φ с вертикалью. Запишем второй закон Ньютона для шарика в проекции на ось, параллельную нити:

$$m\frac{v^2}{l} = T - mg\cos\varphi. \tag{3}$$

Из закона сохранения энергии найдём квадрат скорости шарика:

$$m\frac{v^2}{2} = mgl(\cos\varphi - \cos\alpha),$$
 откуда $mv^2 = 2gl(\cos\varphi - \cos\alpha).$ (4)

Подставив (4) в (3), получим

$$T = mg(3\cos\varphi - 2\cos\alpha).$$

Видно, что сила натяжения нити минимальна при $\varphi=\alpha$ и равна $T_{\min}=mg\cos\alpha$. При φ таком, что $\cos\varphi=2\cos\alpha$, $T=4T_{\min}=2mg\cos\varphi$. В этот момент нормальное ускорение шарика равно

$$a_n = \frac{T - mg\cos\varphi}{m} = g\cos\varphi,$$

а тангенциальное ускорение шарика равно

$$a_{\tau} = g \sin \varphi$$
.

Полное ускорение шарика $a = g \sqrt{\cos^2 \varphi + \sin^2 \varphi} = g$.

Ситуация, когда сила натяжения нити в 4 раза превышает минимальную, возможна, если существует такой угол φ , что $\cos\varphi = 2\cos\alpha$, то есть

$$2\cos\alpha \le 1$$
, откуда $\alpha_{\min} = 60^{\circ}$.

Задача 2. Перезарядка конденсаторов

Нужно рассмотреть два случая: малых напряжений U_0 , когда правый конденсатор вообще не будет заряжаться, так как напряжение на среднем конденсаторе не превзойдёт напряжение открытия диода U_D , и случая, когда заряжается и правый конденсатор. Если диод не открывается, то первоначальный заряд левого конденсатора делится поровну между двумя конденсаторами. Напряжения на конденсаторах через большой промежуток времени после замыкания ключа:

$$U_1 = \frac{U_0}{2}$$
, $U_2 = \frac{U_0}{2}$, $U_3 = 0$ (конденсаторы пронумерованны слева направо).

Видно, что этот случай реализуется при $U_D \ge U_0 / 2$. Выделившуюся в цепи теплоту Q найдём из закона сохранения энергии:

$$Q = \frac{CU_0^2}{2} - 2\frac{C(U_0/2)^2}{2} = \frac{CU_0^2}{4}.$$

Поскольку ток через диод не тёк, всё тепло выделилось на резисторе.

Теперь рассмотрим случай $U_D < U_0 / 2$. При зарядке правого конденсатора напряжение на нём U_3 будет меньше, чем напряжение на среднем U_2 на величину U_D . Напряжения на левом и среднем конденсаторах U_1 и U_2 к окончанию перезарядки будут равными: $U_1 = U_2 = U$. Условие сохранение заряда:

$$CU_0 = 2CU + C(U - U_D)$$
, откуда $U = \frac{U_0 + U_D}{3}$.

Общее количество теплоты, выделившееся к концу процесса в схеме будет равно разности начальной и конечной энергий конденсаторов:

$$Q = \frac{CU_0^2}{2} - 2\frac{CU^2}{2} - \frac{C(U - U_D)^2}{2} = \frac{C(U_0^2 - U_D^2)}{3}.$$

Тепло, выделившееся на диоде

$$Q_{\scriptscriptstyle D} = q_{\scriptscriptstyle D} \cdot U_{\scriptscriptstyle D},$$

где $q_{\scriptscriptstyle D} = CU_{\scriptscriptstyle 3}$ — заряд правого конденсатора к концу процесса перезарядки. Таким образом

$$Q_{D} = \frac{C \ U_{0}U_{D} - 2U_{D}^{2}}{3}.$$

Остальное тепло выделится на резисторе:

$$Q_{R} = Q - Q_{D} = \frac{C(U_{0}^{2} - U_{0}U_{D} + U_{D}^{2})}{3}.$$

Задача 3. Ускорение доски

Пусть m — масса бруска, a — искомое ускорение доски, ka — ускорение бруска (k>1), F — постоянная сила, действующая на брусок, $F_{\rm rp}$ — сила трения между доской и бруском. Запишем вторые законы Ньютона для бруска и доски в проекции на горизонтальную ось:

$$F - F_{\text{Tp}} = mka$$
, $F_{\text{Tp}} = Ma$.

Если за t обозначить время движения бруска от одного края доски до другого, то в лабораторной системе отсчёта путь, пройденный бруском, равен $L_m = kat^2/2$, а путь, пройденный доской, равен $L_M = at^2/2$. Разность этих путей есть длина доски:

$$L = L_m - L_M.$$

Работа силы, приложенной к бруску, равна

$$A = F \cdot L_m = (mka + Ma) \cdot L_m. \tag{5}$$

Запишем закон сохранения энергии для системы «брусок+доска»:

$$A = \frac{m}{2}(kat)^{2} + \frac{M}{2}(at)^{2} + Q = mkaL_{m} + MaL_{M} + Q.$$

С учётом выражения для работы (5) после сокращения получим:

$$Q = Ma(L_m - L_M) = MaL$$
, откуда $a = \frac{Q}{ML}$.

Задача 4. Циклический процесс

График процесса состоит из четырёх прямых, каждую из которых можно задать уравнением вида

$$y + nx = c, (6)$$

где $y = \ln(p/p_0)$, $x = \ln(V/V_0)$, а c — некоторая константа. Для участков AB и CD n = 1, а для участков BC и AD n = 4/3. Произведя потенцирование выражения (6), получим

$$pV^n = c_1$$
, где $c_1 = p_0 V_0^n e^{c_1}$.

Участки AB и CD описываются уравнением pV = const, то есть являются изотермами, а участки BC и AD описываются уравнением $pV^{4/3} = \text{const}$, то есть являются адиабатами (газ многоатомный). Значит, исследуемый процесс есть цикл Карно, его КПД

$$\eta = 1 - \frac{T_2}{T_1},$$

где T_1 — температура на верхней изотерме, а T_2 — на нижней. Из уравнения состояния идеального газа следует, что

$$\frac{T_2}{T_1} = \frac{p_D V_D}{p_B V_B} = \frac{p_D}{p_B} = e^{-0.2} = 0.82.$$

Откуда

$$\eta = 18\%$$
.

Задача 5. Провисла-натянулась

1. Пусть T — сила натяжения резинки, тогда сила, действующая со стороны блока на брусок 3 равна 2T. Ускорения брусков обозначим a_1 , a_2 и a_3 соответственно. По второму закону Ньютона

$$m_1a_1 = T$$
; $m_2a_2 = T$; $m_3a_3 = 2T$.

Тогда тоже отношение справедливо для изменения импульсов (с учётом направлений)

$$m_1 \nu_1 = m_2 \nu_2 = 2m_3 V - \nu_3$$
.

Скорость изменения длины нити $dL/dt = 2v_3 - (v_1 + v_2)$ при наибольшем растяжении обращается в ноль, то есть $v_1 + v_2 = 2v_3$.

Откуда

$$\begin{split} \upsilon_3 &= m_3 \ m_1 + m_2 \ V \ / \ m_1 m_2 + m_1 m_3 + m_3 m_2 \ ; \\ \upsilon_1 &= \ 2 m_3 m_2 V \ / \ m_1 m_2 + m_1 m_3 + m_3 m_2 \ ; \\ \upsilon_2 &= \ 2 m_3 m_1 V \ / \ (m_1 m_2 + m_1 m_3 + m_3 m_2). \end{split}$$

2. Остаётся в силе следствие второго закона Ньютона

$$m_1 v_1 = m_2 v_2 = 2m_3 (V - v_3).$$

При возвращении резинки снова в ненатянутое состояние, по закону сохранения энергии:

$$m_1 \frac{{\upsilon_1}^2}{2} + m_2 \frac{{\upsilon_2}^2}{2} + m_3 \frac{{\upsilon_3}^2}{2} = m_3 \frac{V^2}{2}.$$

Откуда

3. Подставляю в полученную в первом пункте формулу числовые значения, находим

$$\upsilon_3 = \frac{9}{11} \,\mathrm{M/c}.$$